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ABSTRACT
The main objective of this study is the development of a simulation
and optimization method for wide-area terrain mapping with terres-
trial laser scanning (TLS). The problem can be stated as follows: given a
prior digital surface model (DSM) of a region of interest (e.g. from
airborne lidar or structure-from-motion photogrammetry), determine
the minimum number of scan locations required to seamlessly scan
the terrain in the region for a given scanner range and angular field-of-
view (FOV). An optimization method for measurement setup is devel-
oped using multiple viewshed analysis and simulated annealing (SA)
constrained by the system performance characteristics and survey
specifications. The method is evaluated at a sediment and erosion
control facility with hilly terrain by comparing random scan locations
versus optimized three to six scan locations. Statistical results illustrate
that average visibility for random sampling increases gradually with
scan locations. However, random sampling clearly underperforms in
terms of scan visibility relative to five or six optimized scan locations
with an average visibility of 100%. Similar patterns in optimized scan
locations demonstrate that certain terrain morphometry at the study
site is an essential factor for TLS survey design. Finally, an optimized
solution is compared to a brute-force manual solution for determining
four scan locations for conducting surveys at the study site. Results
show the effectiveness of the optimization method for selecting com-
binations of scan locations that enable more efficient TLS survey
coverage over a wider terrain area compared to manual selection.
Furthermore, results demonstrate the adaptability of the method to
take into consideration different scan parameters and survey condi-
tions, such as pre-determined scan locations thatmay be required (e.g.
a survey control monument).
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1. Introduction

Landscapes undergo constant evolution through natural erosions and anthropogenic
events (Dean and Dalrymple 2002; Starek et al. 2011). It is more important nowadays than

CONTACT Tianxing Chu tianxing.chu@tamucc.edu Department of Computing Sciences, Texas A&M University-
Corpus Christi, Corpus Christi, TX 78412, USA
†This paper is an extended version of a poster entitled ‘Optimization of terrestrial laser scanning survey design for
dynamic terrain monitoring’ presented at 2010 American Geophysical Union (AGU) Fall Meeting, San Francisco, CA, USA,
13–17 December 2010.
This article has been republished with minor changes. These changes do not impact the academic content of the article.

INTERNATIONAL JOURNAL OF REMOTE SENSING
2020, VOL. 41, NO. 16, 6409–6426
https://doi.org/10.1080/01431161.2020.1752952

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any med-
ium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2020.1752952&domain=pdf&date_stamp=2020-06-18


ever to effectively monitor the highly variable evolution processes and understand their
nature in order to support decision-making with respect to human settlement, environ-
mental conservation, ground and air transportation and so forth. Studies of landscape
morphology using three-dimensional (3D) terrain surface products from satellite remote
sensing have been extensively investigated, mostly at regional and global scales given
relatively large pixel spacing and limited vertical accuracy (Mukul et al. 2017; Yap et al. 2018).

The advent of light detection and ranging (lidar) technology mounted in airborne and
terrestrial platforms has made it possible to accurately and rapidly monitor dynamic
terrain evolution (Mitasova et al. 2010). Compared to airborne lidar, terrestrial lidar,
more commonly referred to as terrestrial laser scanning (TLS), is advantageous for very
high-resolution mapping of localized terrain providing sub-cm scanning resolutions and a
few mm point measurement accuracies (Starek et al. 2011). TLS has been widely adopted
to examine landform dynamics (Feagin et al. 2012; Guisado-Pintado, Jackson, and Rogers
2019) and ecological resilience at coastal zones (Nguyen et al. 2018; Owers, Rogers, and
Woodroffe 2018). 3D TLS surveying and visualization techniques have also been estab-
lished for the documentation and preservation of cultural heritages (Lezzerini et al. 2016;
Liang et al. 2018). Studies have also leveraged repeated surveys for change detection of
landslide movement (Barbarella, Fiani, and Lugli 2015; Prokop and Panholzer 2009) and
crop growth monitoring (Hoffmeister et al. 2016).

Investigations have disclosed that the overall scanning and mapping performance
varies dependent upon quantity and distribution of scan locations (Heritage et al. 2009;
Olsen et al. 2009). Different from airborne lidar for which survey planning methodologies
have been well documented for choosing appropriate parameters such as flight height,
overlap, and sampling rate (Renslow 2012), best practices for planning TLS surveys have
not reached agreement owing to the complexity of topographical variability as well as the
heterogeneous nature of TLS surveys associated with variable point density (O’Banion and
Olsen 2018). Due to limited TLS scanning ranges and occlusion, multiple scans may be
required to merge together to form a seamless model of the scene. Jia and Lichti (2017)
introduced a method for optimization of indoor TLS survey networks by constraining the
problem based on scan location and incidence angles. Similar to the work here, heuristic
algorithms were employed to find optimal solutions, but it was designed for scanning of
wall segments, not natural terrain. To advance TLS surveying practices in the outdoors
and achieve a digital elevation model (DEM) of specified resolution and completeness,
O’Banion and Olsen (2018) developed a TLS acquisition planning tool to assist in estimat-
ing the minimum required quantity of scans and scanning resolution. While the study
aimed to balance surveying efficiency and desired quality specifications for adequate
DEM completeness, optimized scan planning and placement over a specific topography
remained unclear. For contiguous mapping of terrain over wide areas (> a few hundred
metres horizontally), TLS survey planning poses several obstacles that must be overcome.
The selected measurement set-up, sampling resolution, and other survey design factors as
well as inherent system characteristics will influence the measurement capabilities and
efficiency of repeat-coverage surveys for monitoring terrain change.

To develop an effective planning method for terrain monitoring with TLS, this research
investigates the influence of scan configuration on surface coverage capability with the
goal of optimizing TLS data acquisition while minimizing information loss. This problem
can be formulated as a constrained multiple viewshed analysis, which falls under the
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broader domain of combinatorial optimization (e.g. travelling salesman problem). The
multiple viewshed problem runs on the order of O(nm) for n>>m where O is the notation
to express the time complexity of an algorithm, n is the number of candidate view
locations and m is the number of viewpoints. Such problems quickly become computa-
tionally intractable. For example, n = 3000 candidates andm = 5 viewpoints has a runtime
on the order of about 2 × 1017. Prior research efforts have developed efficient multiple
viewshed algorithms for geospatial modelling applications (Andrade et al. 2011; Franklin
2000; O’Sullivan and Turner 2001). For optimizing TLS surveys over wide-terrain areas (i.e.
multiple scan positions are necessary to provide contiguous coverage), researchers have
shown that simulated annealing (SA) among other heuristic algorithms can produce
adequate results in terms of multiple viewshed performance and computational efficiency
(Kim, Rana, and Wise 2004; Adewole, Otubamowo, and Egunjobi 2012; Yu et al. 2016).

As a substantive extension to a method first introduced in a previously published
conference poster (Starek, Mitasova, and Harmon 2010), this paper develops a simulation
and optimization method for TLS survey design to map terrain based on multiple viewshed
analysis and SA constrained by scanner characteristics and survey specifications. The
terrestrial lidar scan positioning problem is unique relative to other multiple viewshed
problems because of the constraints imposed by scanner performance, terrain geometry,
and needs for certain amounts of scan overlap and spacing to enable effective registration.

2. Materials and methods

2.1. Study site and survey data

Managed and maintained by North Carolina State University, the study was carried out at
an experimental watershed within the 450 m × 450 m Sediment and Erosion Control
Research and Education Facility (SECREF). Centred at 35° 44.2ʹ N, 78° 40.7ʹ W within the
Piedmont region’s eastern boundary of North Carolina (Figure 1), the SECREF comprises a
catchment for two sub-watersheds. Dense grassland is the dominant land cover type in
the field, but tillage and other agricultural practices are sometimes performed (Starek et
al. 2011). The experimental site is mainly used for the research of soil erosion processes
and landscape modification triggered by significant overland flow events.

Efforts have been made on developing geodetic techniques for rapid data acquisi-
tion and processing to accurately measure the terrain (Mitasova, Mitas, and Harmon
2005; Mitasova et al. 2010; Starek et al. 2011). TLS data of watershed terrain were
acquired with an in-house Leica ScanStation 2 scanner (Table 1 and Figure 2) that is
capable of capturing cm-level changes in terrain and vegetation over the SECREF
study site (Leica-geosystems 2018). Because the area is relatively large
(450 m × 450 m), multiple scans must be acquired to generate seamless and high-
spatial resolution coverage of the region.

In order to facilitate multiple viewshed analysis to optimize scan locations under
study, airborne lidar data from a 2001 North Carolina Floodplain Mapping
Programme (NCFMP) were employed, and its first-return point cloud was interpolated
to generate a 1 m a priori digital surface model (DSM) of the terrain and land cover
elevation (Figure 1). Although the focus here is on optimizing TLS scan positions for
mapping terrain (e.g. generating DEMs of the topography), a DSM of the scene is
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requisite input for TLS viewshed analysis to account for scan occlusion due to trees,
buildings, or other features that may impact survey design. If the region of interest
consists of terrain only, then the a priori DSM in this context will be equivalent to a

Figure 1. (a) Experimental watershed site with an orthophotograph draped over an airborne lidar-
derived 1 m-resolution 450 m × 450 m DSM. The field consists mostly of dense grassland, but it is
subjected to anthropogenic modification by tillage and other agricultural practices. Shaded box
represents survey area of focus that includes major elevation variability of the bare earth terrain.
The star located lower right is the main drainage outlet. (b) 1 m-resolution DSM of terrain and land
cover generated from airborne lidar data used to perform viewshed analysis. The field was subjected
to rill erosion along the hillsides during heavy rain events and gully erosion within a drainage basin
formed by the confluence of runoff from two main hillslopes.

Table 1. Specification of the terrestrial scanner and survey.
Scan specification Survey parameter

Class 3 R laser Green Horizontal field of view (°) from 0 to 360
Beam divergence (rad) 1.5 × 10−4 Vertical field of view (°) from −45 to 10
Pulse rate (pulse s−1) ≤55,000 Horizontal spacingb (mm) 10.0
Range at 90% albedo (m) 300 Vertical spacingb (mm) 10.0
Spot sizea (mm) ≤6.0 Points per scan >1,200,000
Distance accuraca (mm) 6.0 Average point spacing (mm) 1.1

a1 to 50 m range, 1 sigma.
bat 10 m range.

Figure 2. Instrumentation. (a) Leica ScanStation 2 scanner. (b) Image mosaic of the study area
acquired from Leica ScanStation 2 high-resolution digital camera at a particular scan position. (c)
Point cloud generated from two co-registered scans covering an approximately 200 m × 200 m flat
area. The upper right corner is a forest. (d) Example point cloud overlaid on the image mosaic shown
in (b) coloured by elevation.
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DEM of the ground surface (often called a bare-earth DEM or digital terrain
model (DTM)).

2.2. Multiple scan location optimization

In this study, the problem to be solved can be stated as follows: for a given scanner
configuration (particularly scanner range, angular field of view, and height) and a priori
DSM of the survey area (e.g. from airborne lidar), identify m scan locations (viewpoints)
that optimize the percentage of n pixels that are visible in the model as expressed in the
following cost function (Kim, Rana, and Wise 2004):

max C vð Þð Þ¼
Xm

i¼1

Xn

j¼1
vij (1)

wherem represents the number of scan points, n depicts the number of pixels in the grid, v
denotes viewshed indicator at the location indexed by i and j, and C(v) is defined as
cumulative viewshed that shows combined coverage of all viewsheds with varying degrees
of overlapping. In the a priori DSM, the viewshed indicator v in Equation (1) is determined
by a laser scanner’s line of sight (LOS) that is calculated by performing LOS analysis from
the scanner location to each pixel within a given distance. Specifically, a viewshed indicator
v, which is associated with a specific scanner location A and a pixel point B, is defined as

v ¼ 0; 9 PðθP > θA;BÞ
1; " PðθP � θA;BÞ :

�
(2)

where P is any pixel point between A and B, θA;B depicts the elevation angle from A to B,
and θP depicts the elevation angle from A to P. The cost function Equation (1) is subject to

0 �
Xm

i¼1
vij � m for j ¼ 1; 2; � � � ; n (3)

0 �
Xn

j¼1
vij � n for i ¼ 1; 2; � � � ;m (4)

0 �
Xm

i¼1

Xn

j¼1
vij � mn (5)

Equation (3) explains that a particular pixel can be observed by some or even all view-
points given a terrain geometry. Similarly, as stated in Equation (4), a laser scanner can see
the whole terrain surface with maximum visibility if it is set up at the optimal location.
Based on Equations (3–4), Equation (5) indicates the maximum theoretical cumulative
viewshed that the cost function Equation (1) can achieve.

Furthermore, the TLS positioning problem is unique relative to other multiple viewshed
problems because of the constraints on scanner performance, terrain geometry, scanner
spacing distance, and the potential need for certain amounts of scan overlap to enable
effective registration. Table 2 lists practical constraints that complement Equations (3–5) to
determine whether an area represented by the a priori DSM is visible from a respective TLS
scan location. Figure 3 further illustrates the defined scan constraints in this study.

The goal is to optimize per cent coverage of a TLS survey given m scan locations and a
respective set of scan constraints as specified in Table 2 for an input a priori DSM. The listed
parameters are scanner dependent and tuneable based upon TLS survey specifications. A
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conservative scan range of 150mwas used instead of the scanner’s reported range of 300m
(see Table 1) to account for reduction in effective range due to lower surface albedo over the
vegetated terrain, and reduction in point density extending radially away from the scanner.
For this specific study site and TLS, scans were typically acquired with a horizontal stepping
angle of 1 × 10−3 rad. This equates to 15 cm point spacing at 150 m radius away from the
scanner. In practice, scans were performed at regular spacing intervals to ensure that the
average point density (spacing) within a contiguously mapped region was sufficient for
creating decimetre resolution DEMs. By setting a 150 m range for viewshed computation,
this ensures that any area of the terrain represented by a set of DSM grid cells viewable from
a respective scan location will have, in theory, a 15 cm or less point spacing based on the
stepping angle above. The scanner height (Table 2) was set to 1.6 m to reflect the tripod
height typically used for operating the scanner in the field. A full 360° field-of-view (FOV)
was enforced to provide full scanner coverage.

Table 2. Scan constraint parameters
for multiple viewshed analysis used
in the study.
Viewshed parameter Value

Scan range (m) 150.0
Scan height (m) 1.6
Field of view (°) 360.0
Scan location spacing (m) 5.0

Figure 3. Illustration of defined scan constraints. (a) An orthophotograph demonstrating all possible
scan locations (red dots) given a scan location spacing of 5 m at the SECREF. All the possible scan
locations are within the survey area of focus represented by the shaded box in Figure 1 (a). A scan at a
particular location (cyan dot) can reach up to 150 m, which covers the entire yellow zone. The black
polygons in (a) represent local sub-watersheds delineation at the study site. (b) The Leica ScanStation
2 system scanning all directions horizontally at a scan height of 1.6 m above ground.
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Adjustment of the scan location spacing (Table 2) must take into consideration a
performance tradeoff between per cent coverage and scan-to-scan overlap. A relatively
larger scan spacing helps maintain better per cent coverage in general (assuming the
same number ofm candidate scan positions) while reducing scan overlap causing sparser
point cloud density, and vice versa when reducing scan spacing. In this study, compro-
mise has been made and 5 m scan location spacing was selected to account for point
cloud density to assist in registration of neighbouring clouds beyond pursuing maximum
per cent coverage. The scan spacing also dictates the number of candidate scan locations
that are examined as explained further below.

2.3. SA optimization approach

SA is a heuristic algorithm that simulates the physical annealing process to find the global
optimum of a given cost function on an iterative basis. It can deal with arbitrary systems
with high nonlinearity and complex constraints. Given a discrete search space, SA allows
the search process to occasionally proceed in an unfavourable direction, allowing the
algorithm to likely escape from local extrema and reach the global optimum.

In this study, as illustrated in Figure 4, the annealing procedure is implemented as a
pair of nested loops following the procedure first outlined in (Liu, Kao, and Wang 1994).
The search is started by defining initial controlling parameters: temperature, T, cooling
ratio, R, inner loop control, L, frozen ratio, Fr, and threshold of acceptance rate, Pth. Then a
randomized solution

X0¼ x01; y
0
1

� �
x02; y

0
2

� � � � � x0m; y
0
m

� �� �T
(6)

is generated, where ðx0i ; y0i Þ represents initial horizontal coordinates before iterations at
scan location i and i 2 1; 2; � � � ;m½ �. In an inner loop where temperature is fixed, a
neighbouring solution X of X0 that decreases the energy is accepted. On the other hand,
the algorithm also accepts bad solutions according to the Metropolis’ criterion in order not
to converge locally (Metropolis et al. 1953). The inner loop is the core of the annealing
procedure, and the iteration time, L, is proportional to the neighbourhood size for candidate
scan locations and a user-defined sample space parameter, S (see Table 3). Acceptance
moves during the inner loop procedure are incrementally counted and used to compute the
fraction of acceptance moves, P, by dividing the total number of accepted moves by the
iteration time, L. When the inner loop exits, the temperature is then decreased in the outer
loop based on the threshold of acceptance rate, Pth, as follows (Figure 4). If the fraction of
acceptance moves, P, at the current temperature is larger than Pth, the temperature is
considered to be too high, and the temperature is divided by 2 following a binary search
pattern. Else, if the fraction of acceptance moves, P, of a temperature is less than or equal to
Pth, the temperature is reduced slowly using the cooling ratio, R.

As the annealing procedure evolves, the process accepts less bad solutions at each
temperature until at very low temperature the algorithm converges to an optimized
solution and reaches a frozen state (i.e. no further improvement in the cost is likely). Exit
criterion is governed by the user-defined frozen ratio, Fr, and a counter. The counter is
incremented by one each time the run length at a temperature has been reached for which
the percentage of accepted moves is less than or equal to Fr, and is reset to 0 each time the
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percentage of accepted moves of a temperature is larger than Fr. When the counter reaches
a value of 5, the process is considered to be frozen (Liu, Kao, and Wang 1994).

Table 3 summarizes annealing controlling parameters and values used in this study.
Tuning of the user-defined control parameters for a given problem are generally done
through empirical design by evaluating various combinations of parameter settings on
two key factors: solution quality and run time. SA performance is often influenced by
initial temperature T(0) and cooling ratio R (Baños et al. 2013). Starting with very high
initial temperatures and a larger cooling rate allows longer and slower cooling,

Figure 4. Flowchart of optimizing multiple scan locations based on the SA algorithm. The inner loop of
the algorithm where the temperature is fixed is included in dashed rectangle with cyan background.

Table 3. Annealing controlling parameters.
Parameter Definition Value

n Number of total possible viewpoints 3074
Ns Size of neighbourhood m × (n − m)
S Sample space control parameter, > 0 0.50
L Inner loop control S × Ns
T(0) Initial temperature 1.00 × 106

R Cooling ratio, [0, 1] 0.80
Fr Frozen ratio, [0, 1] 0.04
Pth Acceptance rate of temperature reduction, [0, 1] 0.70
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respectively, at the expense of increased computational time. In this work, a very high
initial temperature value of 1 × 106 was evaluated but it was found that a lower
temperature at 1 × 104 provided similar solution quality with less computational time.
Studies have shown that a larger R, S, or Pth or a smaller Fr can yield a better solution (a
smaller percentage above the best-found solution) at the cost of more run time (Liu, Kao,
and Wang 1994; Baños et al. 2013). Hence, some trade-off must be chosen between the
solution quality and the run time. This work tested a small set of recommended values
based on empirical results determined in prior studies (Liu, Kao, and Wang 1994;
Schneider and Kirkpatrick 2006; Saruhan 2014). Values that provided a good solution
performance at a reasonable computational expense were adopted and are shown in
Table 3 for R, S, Pth, and Fr.

It is also worth noting that the value of parameter n is not an inherent SA parameter but is
dependent on the resolution, spatial extent of the DSM, and scan location spacing.
Increasing the scan position spacing decreases the number of available candidate scan
locations (viewpoints), which stem from the set of a priori DSM grid cell locations. For
example, a scan location spacing of 0 m implies all grid cells are available as candidate scan
locations whereas a spacing of 10 m implies every 10th grid cell location is used as a
candidate scan location (assuming a 1 m resolution DSM as used here). For this study, 5 m
spacing was implemented by regularly sampling every 5th grid cell in the DSM within a
rectangular extent defined around the primary area of interest (see Figure 1(a)). Zones/cells
of the DSM representing forested land cover or buildings were excluded as candidate
viewpoints. However, if one desired to include a scan location on top of a building, such
as on a flat roof, the position could be included from the DSM. The selected 5 m scan
location spacing used in this study resulted in a relatively large number of candidate
viewpoints (n = 3074). As shown in Table 3, this value is used to compute the size of
neighbourhood,Ns, for candidate scan locations, which is dependent on the number of scan
locations, m. Inner loop control, L, is then defined proportional to Ns and the user-defined
sample space control parameter, S.

3. Results

3.1. Cumulative viewsheds and scan locations

Before showing cumulative viewsheds and the associated scan locations via SA optimiza-
tion, it is of value to display how viewsheds from different locations can vary due to
terrain. Individual viewsheds were computed at all of the n possible viewpoints using
open-source GRASS GIS software (GRASS Development Team 2018). As an example, three
different scanner placement points at the SECREF watershed under study are visualized in
Figure 5. The green dots in Figures 5(a-b) denote scanner locations, and LOS viewshed
areas are delineated in blue. Figure 5(c) shows an example viewshed overlaid on a
shaded-relief DSM of the study area (scan location is identified as a cross-hatch). It is
suggested that a substantial difference of viewshed coverage can be achieved dependent
on scan location, scanner specifications, and DSM complexity.

Cumulative viewshed results examining optimal placement for m = 3, 4, and 5 scan
locations are presented in Figuress 6(a-c). Results show combined coverage of all view-
sheds with varying degrees of overlapping. The cyan dots depict actual scanner locations

INTERNATIONAL JOURNAL OF REMOTE SENSING 6417



optimized via SA processing, and a circled scanning area centred on each cyan dot
location can be observed. The relatively dark colour in the survey area of focus suggests
multiple overlaps. It is obvious that having five scan locations provides more complete
coverage in general than that of only three or four locations in the study case.
Furthermore, having five scan locations enables more degrees of overlapping for favour-
able point cloud density.

To demonstrate the effectiveness of the developed method, SA algorithm was exe-
cuted independently 10 times against random scan locations for scenarios of m = 3, 4, 5,
and 6, respectively. Figure 7 shows the average visibility computed from solutions
obtained from 10 executions between random sampling and SA for each of the m = 3
to 6 scenarios. The statistical results illustrate that average visibility for random sampling
increases gradually with scan locations. However, random sampling clearly underper-
forms SA in terms of scan visibility given the constraints discussed in Section 2.2. In
addition, an average visibility of 100% can be achieved whenm = 5 or 6, meaning that the
developed method can stably cover the whole survey area under study in each of the

Figure 5. Individual viewsheds at three different locations at the SECREF watershed under study
overlaid on an aerial image of the site, i.e. (a) and (b), and a shaded relief of the DSM (c). The polygons
in (a) and (b) represent local sub-watersheds delineation at the study site. The green dots denote
scanner locations, and LOS viewshed areas are depicted in blue. The lower half of the study site,
separated by the dashed lines in (a) and (b), is a focus area for erosion and runoff assessment.

Figure 6. Cumulative viewshed results and scan locations obtained from SA at the survey area of focus
as shown in Figure 1(a). Figure 6 shows the nadir view of cumulative viewshed and scan locations (i.e.
cyan dots) for optimized scan locations m = 3, 4, and 5, respectively. The areas with darker colour
indicate more scan overlap.
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algorithm executions. That being said, we will not be able to benefit from a larger m in
terms of scan visibility, unless more point cloud overlap is desired. Furthermore, the
results reveal that the majority of selected scan locations are located along ridgelines
between those scenarios (Figure 8). The similarity in the topographical pattern of the scan
locations demonstrates that terrain morphometry (here ridgelines) tends to be an essen-
tial factor for the optimization design of survey locations using cost function Equation (1).

3.2. Practical application for terrain modelling with TLS

A series of 32 individual viewsheds were created from DSM grid cell locations manually
distributed at roughly equal intervals within the lower half of the study site (Figure 9(a)).

Figure 7. Average visibility for SA against random sampling for optimized scan locations m = 3, 4, 5,
and 6, respectively. The total number of pixels reaches up to 76,007. SA enables high viewshed
visibility even with only three scan locations for the study area. The viewshed visibility becomes
saturated when m = 5, whereas random sampling only achieves approximately 63%.

Figure 8. Display of scan locations on a 3D model at the survey area of focus as shown in Figure 1(a).
Figure 8 shows the oblique view of SA selected scan locations overlaid on a DEM for m = 4, 5, and 6,
respectively. The majority of selected scan locations are located along ridgelines.
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Some locations were pre-defined locations used for repeat TLS surveying at the study site
based on the needs to survey control and scan-to-scan registration distances. Other
locations targeted ridgelines and other higher elevation vantage points. Denser spacing
along the roadway at the bottom was due to ease of accessibility. The viewsheds were
constrained by the scanner values shown in Table 2 except for the max range was set to
200 m and scan spacing was based on the manual gridding process described above.
Figure 9(b) shows an example viewshed computed for scan position 9. This location was a
pre-determined scan location with a geodetic control mark utilized for each TLS survey
conducted at the study site.

A cumulative viewshed result generated from four scan locations was then selected
manually using a ‘brute force’ approach. Three scan locations in addition to scan position 9
were selected based onmanual inspection of viewsheds by comparing their overlap to ensure
sufficient coverage for the lower half of the study site. Figure 10(a) shows the cumulative
viewshed result generated from the four scan locations selected manually using the ‘brute
force’ approach. This typeofmanual evaluationprocess is tedious, inefficient, does not provide
any type of near-optimal performance guarantee, and limited in practicality for TLS survey
design. As observed in Figure 10(a), coverage in the lower half of the study site was sufficient
but the upper half of the study site was largely uncovered. It is also important tomention that
scan position 9 discussed above is labelled position 1 in the figure.

To evaluate the effectiveness of the developed optimization approach, a solution
was run for m = 4 scan locations constrained by the values shown in Table 2 except
for a scanner range of 200 m. One of the positions was set to scan position 9 so only
three newly ‘optimized’ scan locations were determined. Figure 10(b) shows the
cumulative viewshed result of the three optimized scan locations plus scan position
9 (shown as position 1 in the figure). It is worth noting that the lower half of the study
site was the primary focus of TLS surveys for erosion and runoff assessment. While the
manual approach only selected scan locations within the lower half of the study site,

Figure 9. (a) Shows the distribution of 32 manually selected TLS scan locations for evaluating
individual viewsheds within the lower half of the study site (dashed line). (b) Shows a viewshed
computed from scan location 9, which was a pre-determined scan location with a geodetic control
mark utilized for each survey conducted at the study site.
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the optimization approach was permitted to search any possible locations within the
upper half to highlight the advantage of the optimization strategy over manual
selection with a possibly smaller number of scans to achieve comparable viewshed
within the same area. When comparing to the manual selection result (Figure 10(a)),
the three optimized locations plus scan position 1 provide a cumulative viewshed with
nearly identical coverage in the lower half of study site and, furthermore, cover a
substantial amount of area in the upper half. Examining Figure 10(b) in more detail,
scan position 3 is located along a ridge line, which makes sense given the higher
vantage point, and interestingly, scan position 2 is located nearby to the manually
determined scan position 2 but at a slightly higher vantage point (Figure 10(a)).
Comparing to the manual selection process, which provided less scan coverage for
the same number of scan locations, results show that the developed optimization
method is effective at determining combinations of scan locations for wide-area terrain
surveying with TLS. Furthermore, results show that the developed method is adaptable
and can take into consideration pre-determined scan locations that may be desired for
terrain monitoring, such as a permanent survey control monument.

As an example of the optimized locations used in practice, repeat TLS surveys were
conducted roughly one month apart at the study site. For each survey date, three TLS scans
were conducted at optimized scan locations 2 and 3 and pre-determined position 1 (Figure 10
(b)). DEMs of the exposed terrain and field cover were then generated from the TLS surveys at
0.2m resolution using the regularized spline under tension spatial interpolation routine (v.surf.
rst) within GRASSGIS (Mitasova, Mitas, andHarmon 2005). Figure 11(a) shows the 1mairborne
lidar DSM. Figure 11(b) shows the 0.2 m resolution DEMs for the two TLS surveys for a portion
of the field (red box in Figure 11(a)) generated from them= 3 scan locations. As observed, very

Figure 10. (a) Cumulative viewshed generated from four scan locations based on manual selection.
Scan position 1 is the same pre-defined scan location (formerly called position 9) as shown in Figure 9
and discussed in the text above. (b) Cumulative viewshed generated from three optimized scan
locations and pre-determined scan position 1. The polygons represent local sub-watersheds deli-
neated at the study site. The lower half of the study site, separated by the dashed line, is a focus area
for erosion and runoff assessment. (b) provides a substantially higher cumulative viewshed coverage
than (a) by using the same number of scan locations (m = 4).
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fine-scale details of tillage, vegetation, and subtle changes in land cover and terrain can be
observed across the approximately one month span of the survey.

4. Discussion and conclusion

In this paper, an optimization method for terrain mapping with TLS was introduced using
multiple viewshed analysis and SA. Experimentationwas based on TLS surveys conducted at a
watershed maintained by North Carolina State University. Given a prior DSM and survey
specifications, viewsheds were computed for each scan location candidate to determine
visibility. SA algorithm was performed to solve for an optimal solution in which the number
and locations of viewpoints required to seamlessly scan the region based on TLS specifications
were identified. The results suggested that the developed method could be a very useful and
powerful tool for characterizing data acquisition capabilities for a given laser scanner, number
of scans, and terrain scene enabling more efficient survey design. Comparison to brute-force
selection results demonstrated that the developedmethod can enable efficient survey design
given laser scanner capabilities and terrain scene information. In addition, the developed
method has the potential to be used with extensions beyond scan positioning. For example,
the developed method can be applied to simulate scanner performance in complex terrain
and land cover. However, several considerations related to the scan location optimization
method need to be discussed and are summarized below.

First, like many heuristic algorithms, SA requires delicate tuning of the parameters to
account for overall performance in each study case. The precision of the parameter values,
particularly temperature-decreasing strategy and iteration times within the inner loop,
used in implementation can have a significant effect upon the quality of optimization
results. Regrettably, accurate determination of SA parameters is still an open-ended
problem. There is no single solution or recommendation as to how to select each one

Figure 11. (a) 1 m resolution airborne lidar DSM shown as a grey-scale shaded relief. The red box
shows the portion of the field covered by the TLS-derived DEMs. (b) 0.2 m resolution TLS-derived DEMs
(land cover objects removed minus the grassy vegetation) collected at the study site back in
November and December 2009 shown as coloured shaded reliefs. The surveys were conducted
from m = 3 scan locations, two of which were based on optimized locations. The DEMs show detailed
and subtle changes in the field’s topography and grassland cover over the roughly 1-month duration.
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of them and it is often problem specific. Experimental design and analytical methods (e.g.
Liu, Kao, and Wang 1994; Frausto-Solis et al. 2007; Baños et al. 2013) have been performed
to assist tuning the parameters and are worth considering to refine the developed
optimization method. As explained in the methods section, this work took advantage of
prior empirical work on evaluating SA parameter sensitivity to define parameter values.

Second, scanner dependent constraints such as the scan range, scan height, and FOVmust
be correctly identified from TLS specifications and programmed before implementing the
introduced optimization method. Selection of the scan location spacing is a performance
balance between scan-to-scan overlap and per cent coverage. In theory, a scan location
spacing of zero fully releases the spacing constraint between two survey locations. In this
study, 5 m scan location spacing was selected to account for point cloud density beyond
pursuing maximum per cent coverage while ensuring a sufficient number of candidate view-
points. A greater scan spacing (e.g. 10m) can be considered should the surveys aim for further
improved per cent coverage at the expense of reduced candidate selections. Selection of scan
location spacing also depends ongeomorphometry of the terrain. Surveying a topographically
homogeneous terrain may be achievable with a relatively large spacing (e.g. 100 m) and low
number of candidate scan positions, whereas highly varying and undulating terrain with land
cover will require, in general, searching through a much larger candidate space and more
combined viewpoints for continuous coverage. Other possible constraints such as scan angle
relative to the terrain, maximum scan location separation, accessibility, and travel cost can also
be imposed on the main cost function to develop a more robust solution.

In addition, tradeoff between the DSM pixel resolution and the time engaged needs to be
balanced. For the purposes of this study, the a priori DSM utilized was set at 1 m, which was
based on the average point density of the airborne lidar data set utilized to generate the DSM.
It represented themost spatially detailed terrainmodel of the scene available at the timeof the
study, and as such, the effect of DSM resolution on the simulation results was not examined. In
theory, increasing the resolution of the input DSM, assuming it is accurate, will capture more
spatial detail of the terrain and occluding land cover. In return, this should result in a more
realistic solutionof TLS scan coverage for agivennumberofm scanpositions by thedeveloped
method. However, a solution with higher DSM pixel resolution over the same area requires a
greater number of candidate view locations, which may dramatically increase run time.

The time complexity of SA varies and will depend upon the exact nature of the
problem, parameterization settings, and implementation method (Kim, Rana, and Wise
2004). Although some studies attempted to estimate theoretical time complexities for a
given SA implementation and problem, run times are generally evaluated empirically. For
instance, the SA implementation used in this work was adapted from the method first
introduced by Liu, Kao, and Wang (1994) to solve location-allocation problems, which is
analogous to the multiple viewshed problem. Their study reported that five scan locations
(m = 5) with a low number of candidate scan locations (n = 20) resulted in a run time of
70 s. However, if n = 100 without changing the m value, the run time escalated to 1320 s.
While their article was published 26 years ago with outdated central processing unit (CPU)
capability, this same trend on computational load holds. In modern times, a small number
of n is prohibitively impossible for most survey practices given the detailed and growing
resolutions of input DSMs for viewshed computation, such as from airborne lidar. This
higher resolution is desirable. In our study case, n = 3074 based on the 5 m location
spacing for a 1 m DSM. At 1 m spacing using all available DSM grid cells, this would result
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in n = 76,007 possible viewpoint candidates. Squeezing the location spacing can further
increase the number of candidate locations, but run time must be significantly compro-
mised to allow for results to be obtained from highly favourable resolutions.

Finally, this study selected SA as the heuristic algorithm for solving the multiple viewshed
problem because studies have shown it to produce adequate results among other heuristic
algorithms in terms of multiple viewshed performance and computational efficiency (Kim,
Rana, and Wise 2004; Adewole, Otubamowo, and Egunjobi 2012; Yu et al. 2016). However,
there are numerous alternative heuristic algorithms, including more recent variants of SA, for
solving combinatorial optimization problems like the multiple viewshed problem. One well-
known alternative is the genetic algorithm (GA). Several studies have compared the perfor-
mance of SA and GA implementations and results show that SA can consistently converge
faster to an optimal solution, but in terms of solution quality, GA outperforms SA under many
circumstances (Adewole, Otubamowo, and Egunjobi 2012; Jia and Lichti 2017; Kerr andMullen
2019). In general, both heuristics have good searching capabilities; however, GA enables the
evaluation of numerous solutions at each stage in the search based on the population size
whereas SA evaluates only a single candidate at each stage (Jia and Lichti 2017). Therefore, GA
as a search algorithm provides both exploration and exploitation capabilities whereas SA is
biased towards exploitation only (Chen, Xudiera, andMontgomery2012). This is advantageous
for problems with more than one optimal solution and can potentially be advantageous for
improving the solution quality of TLS simulation and viewshed optimization. Other factors to
consider are the ability to effectively tune theparameters for a given algorithmand tradeoffs in
performance gain versus computational load. The optimization framework presented here
was developed in Matlab with viewshed generation performed by GRASS GIS and is easily
adaptable to other heuristic methods including GA.

Future work will focus on modifying the optimization routine for achieving adequate
solution quality by assessing different heuristic algorithms including genetic algorithms
while maintaining low computational load and formulating more constraints to better
account for scan location and registration geometry.
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